
Unsupervised Identification of Study Descriptors in 
Toxicology Research

1Dasha Herrmannova (herrmannovad@ornl.gov), 1Steven R. Young, 1Robert M. Patton,
1Christopher G. Stahl (stahlcg@ornl.gov), 2Nicole C. Kleinstreuer, 2Mary S. Wolfe

1. Motivation
• Extracting data elements from publication full texts is an essential step in a 

number of tasks, however, at present, it is time-consuming, largely manual and
requires domain expertise

• Typical approach to automated data extraction is to build a prediction model from 
training data – however, there are two issues with this approach: 
• Obtaining training data can be very costly
• Depending on task, data being extracted can vary significantly

• Therefore, we focus on unsupervised methods for identifying text segments 
relevant to the information being extracted

2. Data
• A reference database of rodent uterotrophic bioassay data extracted from 670 

research publications [1]
• The database was created to facilitate the development of novel in vitro

methods for testing chemicals
• The studies in the database were assessed according to their adherence to test 

guidelines set forth in [2]:
• Defined using six minimum criteria (MC) (Table 1) 
• Guideline-like studies (GL): all six MC have to be met

• Preparing the database took two people two years, therefore, significant time and 
resources could be saved by automating the process

3. Approach
• The intuition is based off question answering systems
• We treat the criteria descriptions (Table 1) as the question and the text segments

within the publication full text that discuss the criteria as the answers
• The goal is to find the text segments most likely to contain the answer
• We represent the criteria descriptions and text segments extracted from the 

documents as vectors of features, and utilize relatedness measures to retrieve text 
segments most similar to the descriptions

• We represent words as vectors generated using Word2Vec
• A high level overview of our approach is shown in Figure 2

4. Evaluation
• Figure 3 shows an example annotation generated using our approach
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Minimum criteria Description

1: Animal model Immature rats, ovariectomized (OVX) adult rats, or OVX adult 
mice are acceptable (immature mice are not acceptable). OVX 
animals: OVX should be performed between ...

2: Group size Each control group should have a minimum of three animals 
and each test group should have a minimum of five animals. 

3: Route of 
administration

Acceptable routes of administration: oral gavage (p.o.), 
subcutaneous (s.c.) injection, or intraperitoneal (i.p.) injection.

4: Number of dose 
groups

Minimum of two dose level groups. Must have positive control 
and negative control.

5: Dosing interval Dosing for a minimum of three consecutive days. Complete by 
PND 25 in immature animals.

6: Necropsy timing Should be carried out 18-36 hours after the last dose.

Table 1: Minimum criteria for guideline-like studies (shortened). Source: [1].

• The database contains 670 publications (but only 97 (~14%) contain GL studies)
• Each study is assigned a 0/1 label for each MC (0=MC not met, 1=MC met)
• There exist no fine-grained text annotations showing where in text were the 

criteria mentioned
• Most publications contain multiple studies

• We don’t distinguish between publications describing single or multiple studies
• For each MC, if a document contained multiple studies with different labels 

(both 0s and 1s), we discarded that document from our analysis of that criteria
• Table 2 shows final label statistics for each of the criteria (after cleanup)

Criteria Criteria not met Criteria met Total % of positive

MC 1 414 175 589 29.71

MC 2 35 577 612 94.28

MC 3 70 536 606 88.45

MC 4 309 206 515 40.00

MC 5 96 490 586 83.62

MC 6 228 340 568 59.86

GL 522 72 594 12.12

Table 2: Label statistics.

Figure 2: High level overview of our approach

Figure 3: Annotations generated using our method for MC 1. Abstract is from Figure 1.

• Goal: explore whether our approach truly identifies mentions of the MC in text
• We have utilized the existing 0/1 labels to train one binary classifier for each MC
• We have then compared three models which utilized selected sentences:

1. k sentences most similar to the given MC
2. k least similar sentences
3. k randomly selected sentences (but none of the top or bottom k sentences)

• Intuition: a classifier utilizing the correct sentences should perform better

Approach MC 1 MC 2 MC 3 MC 4 MC 5 MC 6

Top k 76.84 91.55 87.71 68.35 88.54 74.23

Random k 73.23 93.72 88.43 65.65 85.29 68.28

Bottom k 70.00 91.39 88.23 63.10 80.60 63.70

Figure 1: Manually annotated text excerpt from a research publication taken from [1].

5. References

1. Input: Document and MC description
2. Segment extraction: Input document 

broken down into shorter sequences 
(e.g. sentences)

3. Representation: Text (segment from 
doc./description) represented as 
sequence of Word2Vec word vectors

4. Word2Word similarities: Cosine 
similarity between words from 
description and words from 
document segments

5. Segment2Description similarities:
1. Select max similarity for each 

word in the document segment
2. Segment similarity = average of 

the word similarities
6. Candidate segments: Top k most 

similar segments

Table 3: Evaluation results.

• For four of the six criteria the top k model performs best
• A possible explanation for the top k model not performing best in the case of MC 2 

and MC 3 is class imbalance (the top k sentences may not contain enough 
negative examples to learn from)
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